Spacecraft Structures, from Concept to Launch (SCS)
Description
This 3-day course presents the structure for a space or launch vehicle as a system. Originally based on the instructor’s book, Spacecraft Structures and Mechanisms: From Concept to Launch, this course has evolved and been improved continuously since 1995.
If you are an engineer involved in any aspect of spacecraft or launch-vehicle structures, regardless of your level of experience, you will benefit from this course. Subjects include functions, requirements, environments, stress analysis, fatigue, fracture mechanics, finite element analysis, configuration development, preliminary design, improving the loads-cycle process, verification planning, quality assurance, testing, and risk assessment.
Course materials include a PDF of the presentation materials.
Who Should Attend:
Structural and mechanical design engineers, stress and dynamics analysts, systems engineers, and others interested in the topic.
What You Will Learn:
The objectives are to impart a systems perspective of space-mission structures and improve your understanding of ….
- Structural functions, requirements, and environments
- How structures behave and how they fail
- How to develop structures that are cost-effective and dependable for space missions
Course Outline:
- Overview of Space Mission Structures
- Structural functions and requirements
- Effects of the space environment
- How launch affects things structurally
- Dispelling some myths
- Top-level criteria for strength analysis
- Understanding verification
- Relating verification to requirements
- Launch Environments and How Structures Respond
- Overview of the mechanics of vibration
- Breaking down the launch environment
- Quasi-static loads
- Transient loads and coupled loads analysis
- Sinusoidal vibration
- Acoustics
- Random vibration
- Mass/acceleration curves
- Shock
- Assessing Structural Integrity: Stress Analysis
- What it means to assess structural integrity
- Stress and strain
- Accounting for strength variation
- Government standards for test options and factors of safety
- Understanding stress analysis and its dependence on test
- Common pitfalls and case histories
- An effective process for strength analysis
- Fatigue and fracture mechanics
- Fracture control
- Structural design criteria
- Overview of Finite Element Analysis
- Idealizing structures
- Introduction to FEA and stiffness matrices
- Effective use of FEA
- Quality assurance for FEA
- Configuration Development and Preliminary Structural Design
- A process for preliminary design
- Configuring a spacecraft, FireSat example
- Types of structures and forms of construction
- Materials
- Methods of attachment
- Reducing cost by reducing the number of parts
- Designing an adaptable structure
- Designing for manufacturing
- Using analysis to design efficient structures (truss example)
- Providing direct load paths
- Estimating weight and managing weight growth
- Improving the Loads-Cycle Process
- The traditional loads-cycle process with coupled loads analysis (CLA)
- Ideas for improving the loads-cycle process
- Managing payload math models
- Integrating stress analysis with CLA
- Potentially eliminating the need for mission-specific CLA for launch of small spacecraft
- Sensitivity analysis for large spacecraft
- Verification and Quality Assurance
- Whose job is this?
- Attending to details
- Controlling the configuration
- Proactive verification
- Verification methods and logic
- Philosophies for product inspection
- Establishing a test program
- Designing a test
- Documenting and presenting verification
- Final Verification and Risk Assessment
- Overview of final verification
- Addressing late-arising loads problems
- What does it mean to “understand” a risk?
- Hypothetical example: Negative margin of safety
Testimonials:
- Many really good examples.
- Excellent presentation—a reminder of how much fun engineering can be.
- Good stuff, and a very clear presentation.
- Very valuable. Relates classroom knowledge to actual experiences in the space industry.
- I wish I had taken this class 20 years ago. Possibly the best course I’ve ever taken.
- “Great course!”—Retired Chief Engineer who helped develop the Saturn family of launch vehicles
Instructor(s):
Tom Sarafin is President and Chief Engineer of Instar Engineering and Consulting, Inc. He has worked full time in the space industry since 1979 as a structural engineer, a mechanical systems engineer, a project manager, and a consultant. Since founding Instar in 1993, he’s consulted for NASA, DARPA, the DOD Space Test Program, Lockheed Martin, DigitalGlobe (Maxar), Sierra Nevada Corp, Spaceflight Industries, Millennium Space Systems (Boeing), and other organizations. He was a key member of the team that developed NASA-STD-5020, “Requirements for Threaded Fastening Systems in Spaceflight Hardware” (March 2012). He is the editor and principal author of Spacecraft Structures and Mechanisms: From Concept to Launch and is a contributing author to Space Mission Analysis and Design. He’s also the principal author of a series of papers titled “Vibration Testing of Small Satellites.” Since 1995, he has taught over 300 courses to more than 6000 engineers and managers in the aerospace industry.