Aircraft Conceptual Design
Description
This popular five-day aircraft design short course has been attended by almost 3,000 people to date, and has been presented at Lockheed, Boeing, NASA Langley, Rockwell, British Aerospace, the Swedish Royal Institute of Technology (KTH), SAAB Aircraft, Linkoping University (Sweden), Samsung Aerospace, and the Chilean Aeronautical Academy (APA), as well as numerous public presentations through AIAA. Aimed at the working engineer in an industry or government aircraft design department, the course is also highly useful for those teaching aircraft design and offers a broad overview of the entire subject of Aircraft Conceptual Design in an integrated, cohesive, and enjoyable set of lectures. All required theoretical methods are covered in the course, but the biggest strength of the course is that it provides a “real-world” insight into the actual practice of aircraft design. Numerous interesting and informative examples are given including design failures!
Tour the course covers both the analytical and design layout skills required for the initial design of new aircraft concepts and emphasizes practical aircraft design including configuration layout development and design “rules-of-thumb” as well as the analytical tasks of design such as aerodynamic analysis and vehicle sizing. Special topics of interest include stealth design, VSTOL and helicopter design, design optimization and carpet plotting, and use of computers and CAD in conceptual design.
COURSE MATERIAL & SCHEDULE
The class will be conducted from 8:00am to about 5pm each day. Participants will receive a full set of bound Lecture Notes, a copy of Dr. Raymer's best-selling textbook, "Aircraft Design: A Conceptual Approach,", and a signed completion certificate suitable for framing.
We recommend you obtain copy of Dr. Raymer’s best-selling textbook, Aircraft Design: A Conceptual Approach; however, it is not required.
What You Will Learn:
A broad and intensive course for everybody involved in new or modified Aircraft Design. This class starts from fundamentals and takes you all the way through the design process including:
- Developing a design in response to requirements
- Laying out the design on a drafting table or CAD screen
- Analyzing it for aerodynamics, propulsion, structure, weights, stability, cost, and performance
- Calculation of range or sizing to a specified mission
- Trade Studies, carpet plots, and multivariable/multidisciplinary optimization, and……
- Learning from your work to make the next design version better!
Course Outline:
DAY ONE
LECTURE 1: INTRODUCTION: Overview of the design process, requirements definition, end products of design.
LECTURE 2: QUICK DESIGN & SIZING TECHNIQUES: Methods to quickly determine aircraft weight and size required to meet mission requirements, rapid aero/weights/propulsion methods, design trade studies.
LECTURE 3: WING/TAIL GEOMETRY SELECTION: Selection of wing geometry and tail arrangement.
LECTURE 4: THRUST-TO-WEIGHT AND WING LOADING, INITIAL SIZING: Initial selection of wing loading and thrust-to-weight (or horsepower-to-weight) ratio to satisfy requirements such as stall speed, climb rate, and maneuverability. Refined estimation of aircraft takeoff weight and fuel weight to attain the design mission, and determination of the required fuselage, wing, and tail sizes.
DAY TWO
LECTURE 5: CONFIGURATION LAYOUT AND LOFT: Design layout of a credible aircraft configuration arrangement including external geometry, conic lofting, flat-wrap development, smoothness verification, cross-section definition, and internal layout. Design layout of wings and tails including airfoil interpolation, trapezoidal and non-trapezoidal geometries, wing location guidelines.
LECTURE 6: AERO & STRUCTURES CONSIDERATIONS: Design guidance and rules-of-thumb for creation of configuration layouts with good aerodynamics and structural arrangement.
LECTURE 7: SPECIAL CONSIDERATIONS: Design impacts of observability (radar, IR, visual, and aural), vulnerability, producibility, and maintainability.
LECTURE 8: SYSTEMS INTEGRATION: Design integration of landing gear, hydraulics, electrics, pneumatics, and avionics.
DAY THREE
LECTURE 9: PAYLOAD, PASSENGERS, & CREW: Design layout of the crew station, passenger compartment, cargo bays, and weapons integration.
LECTURE 10: PROPULSION INTEGRATION: Jet engine integration including engine selection, engine scaling, engine location considerations, inlet geometry and location, and nozzle geometry. Propeller engine integration including engine selection and location considerations, cowling geometry, and propeller sizing. Aircraft fuel system considerations.
LECTURE 11: AERODYNAMIC ANALYSIS: Methods for estimating the aerodynamic lift and drag from low subsonic through supersonic speeds. Methods discussed include the equivalent skin friction method, the component drag build up method, Oswald’s efficiency factor, the leading edge suction method, and the Sears-Haack wave drag method. Introduction to Computational Fluid Dynamics (CFD).
LECTURE 12: STABILITY AND CONTROL ANALYSIS: Methods for determining if the design satisfies essential stability and control requirements including trim, nosewheel liftoff, static stability, departure susceptibility, and spin recovery.
DAY FOUR
LECTURE 13: PROPULSION ANALYSIS: Methods for calculation of the installed net propulsive force for jet or propeller-driven aircraft, including installation corrections, inlet drag, nozzle drag, and propeller thrust calculation.
LECTURE 14: LOADS, STRUCTURES AND WEIGHTS: Aircraft loads, aerospace materials and properties. Introduction to the Finite Element Method (FEM). Estimation of aircraft weights and mass moments using statistical models and corrections for advanced materials.
LECTURE 15: PERFORMANCE ANALYSIS: Performance analysis methods for level flight, climb, glide, takeoff, landing, and maneuver. Energy maneuverability methods for combat analysis and minimum time/fuel to climb. Fighter measures of merit including agility and post-stall maneuver.
LECTURE 16: TRADE STUDIES AND COST ANALYSIS: Refined sizing techniques and discussion of industry methods. Sizing matrix and carpet plot optimization techniques. Use of performance constraint curves to determine the optimal aircraft. Life Cycle Cost analysis using statistical and operational data. Airline economic analysis.
DAY FIVE
LECTURE 17: COMPUTER-AIDED CONCEPTUAL DESIGN: Use of CAD in the conceptual design environment. Overview of computer graphics methods and mathematics for aircraft design. Demonstration of conceptual design CAD and integrated analysis and optimization (RDS-Professional).
LECTURE 18: VTOL, HELICOPTER, AND DERIVATIVE AIRCRAFT DESIGN: Overview of jet VSTOL design and analysis including concepts and integration issues. Helicopter aerodynamics, performance, controls, design, and sizing techniques. Design considerations for development of derivatives of existing aircraft, including performance, weight, and cost estimation.
LECTURE 19: INNOVATIVE DESIGN CONCEPTS: Overview of innovative design concepts including Canard, Flying Wing, Joined-Wing, Blended Wing Body, UAV, Asymmetric, Hypersonic, etc.
LECTURE 20: DESIGN EXAMPLES: Review of prior lessons by a step-by-step
design examples from initial requirements and first sketch to completed
configuration layout and optimization carpet plot, including a Homebuilt
Aerobatic Aircraft and a Lightweight Supercruise Fighter.
Instructor(s):
Daniel P. Raymer is President of the design and consulting company, Conceptual Research Corporation. He is a recognized expert in the areas of Aerospace Vehicle Design and Configuration Layout, Computer-aided Design Methodologies and Design Education. Dr. Raymer is an AIAA Fellow and the 2010 recipient of the AIAA Aircraft Design Award. During his 10 years in the Advanced Design Department of Rockwell (North American Aviation) he conceived and did the layout design of Rockwell’s entries in what became the F-22, B-2, and T-45 programs. Raymer was Head of Air Vehicle Design for X-31 during the conceptual design phase, taking it from “blank sheet of paper”? to the preliminary design baseline configuration virtually identical to the airplane that flew. His industry career includes positions as Director-Advanced Design with Lockheed, Director-Future Missions at the Aerojet Propulsion Research Institute, and Project Manager-Engineering at Rockwell North American Aviation where he was named Rockwell Engineer of the Year. He also served as a research engineer and aerospace design consultant for the RAND Corporation. As President of Conceptual Research Corporation, he develops aerospace vehicle concepts ranging from hybrid airships to electric light aircraft to jet trainers to reusable launch vehicles. He consults on various design-related topics, and codes the RDSwin Aircraft Design and Analysis software. He’s the author of Aircraft Design: A Conceptual Approach, Simplified Aircraft Design for Homebuilders, and Living in the Future: The Education and Adventures of an Advanced Aircraft Designer. His next book is called The Engineer’s Field Guide to Management and Business.
Instructions:
HOTEL & TRANSPORTATION
The class is being presented at the Sonesta Hotel Redondo Beach, 15 minutes from LAX and in the heart of the South Bay beach tourist area overlooking the Pacific Ocean and King Harbor Marina. The hotel features a gourmet restaurant, swimming pool, European Day Spa, Gold's Gym, bike rentals, and a shuttle bus to the airport. You can walk to over 15 ocean front or ocean view dining spots, take a shuttle to area shopping malls, or even book a sailboat or a whale-watching cruise! Popular tourist attractions such as Hollywood, Venice Beach, the Queen Mary, and Disneyland are nearby.
To stay at the Sonesta Hotel, book online or call 310 318-8888. Government and AAA rates may be available. Other nearby hotels include the Redondo Beach Hotel which is across the street, and the affordable Holiday Inn Hermosa Beach which is a pleasant 5-10 minute walk.